

Helicopter Health and Usage Monitoring Systems (HUMS)

Brian D Larder Stewart Hughes Limited

Aviation Analysis Tools and Methods
Third GAIN World Conference
November 3-5, 1998

A History of HUMS

- Requirement large UK public transport helicopters:
 - Perceived need to improve helicopter safety
 - Mandatory requirement for FDRs on existing aircraft
 - HUMS needed for certification of new aircraft
- Implementation:
 - HUMS developed and trialed in the UK in the 1980s
 - North Sea operators installed HUM/FDR systems in the early 1990s
- HUMS then adopted by constructors and other civil/military operators
 Third GAIN World Conference, November 3-5, 1998

HUMS functions

- Rotor Track and Balance
 - Blade track, Vibration
- Engine Health Monitoring
 - Performance, Vibration
- Drive Train Health Monitoring
 - Vibration, Oil debris
- Usage Monitoring
 - Exceedance, Operational data, Usage spectrum
- Flight Data Recording

HUMS Outputs

- Output devices:
 - Flight line unit (RTB)
 - Ground Station(Maintenance)
- Outputs:
 - Reports and alerts
 - Data numerical displays
 - Data trend displays
 - 'Raw' data inspection

HUMS Data Analysis Support

- Operators HUMS departments/specialists
- Constructors HUMS departments
- Stewart Hughes ILS Group:
 - Support to operators and constructors
 - Customer database reviews
 - Expert diagnostic support (enquiry forms)
 - Maintenance of a fault library
 - User conferences

HUMS - The Future

- Development of current functions
 - Maintenance credits, control of aircraft lifing
- New HUMS functions
 - Pilot assist, e.g. carefree handling
- New FDR functions
 - Enabling system for helicopter FOQA:
 - CAA research programme
 - Flight trials next year

HUMS In-service experience

- HUMS is providing real safety benefits
- HUMS is becoming an effective maintenance support tool
- RTB operations have been simplified and airframe vibration levels reduced
- HUMS/FDR exceedance and incident data has prevented unnecessary component rejections

HUMS diagnostic performance

- CAA data on HUMS arisings approximately:
 - 70% successful detections
 - 15% fault evident in data, but not detected
 - 15% failures
- SHL's HUMS database contains over 25 different types of drive train and rotor fault
- HUMS has successfully detected a wide range of both 'classical' and 'novel' faults
- Diagnosis of 'novel' faults relies on experience

Example of a 'classical' fault

- Fatigue failure of a shaft coupling bolt
 - Alert on HUMS Data
 Retrieval Unit after
 download between flights
 - Large increase in shaft1/rev vibration
 - Visual inspection of shaft identified a coupling bolt failure
 - Next flight cancelled

Shaft 1/rev vibration trend

Example of a 'novel' fault

- Circumferential crack in outer race of MGB bearing
 - Rising indicator trends with increased variability trends tracked for period of time
 - Raw data inspected periodically showed abnormal characteristics
 - Fault not diagnosed, but MGB rejected
 - Found large circumferential crack in shaft support bearing

Bevel gear indicator trend

Bevel pinion indicator trend

HUMS Issues

- In common with other Aviation Analysis Tools:
 - HUMS has been breaking new ground, introducing new monitoring and diagnostic techniques
 - HUMS involves multiple organisations: System suppliers, Operators, Constructors and Regulators
 - The potential of HUMS is being limited by a lack of information exchange between these organisations

The need for information

- HUMS suppliers
 - Need feedback to develop HUMS diagnostics
- Operators
 - Need effective HUMS-related maintenance procedures and advice
- Constructors
 - Need an understanding of HUMS to develop maintenance procedures and propose credits
- Regulators
 - Need confidence in HUMS to award safety and maintenance credits

Information Sources and Issues

- In-service data:
 - HUMS data (different systems, data owned by operators, sensitive data)
 - Operator maintenance data (no HUMS-specific records, sensitive data)
 - Overhaul data (different organisations, no general requirement for strip reports, sensitive data)
 - Accident/incident data (sensitive data, legal issues)
- Other data:
 - Test rig/validation data (ownership of data)
 - Conference papers (selectivity of information)

Third GAIN World Conference, November 3-5, 1998

Information sharing

- Current activities:
 - HUMS supplier sharing experience between operators (SHL)
 - Constructor providing HUMS reports based on gearbox overhauls (Sikorsky)
 - Sharing of experience between operator, constructor and regulator (EuroHUMS CSI)
 - Conferences on HUMS experience (IMechE)
- Need mechanisms for wider sharing of de-identified data between all interested parties

Conclusions

- HUMS represents a major advance in helicopter monitoring technology
- HUMS is providing real safety and maintenance benefits
- There is potential for considerable future growth in HUMS capabilities and benefits
- The sharing of information is key to the realisation of this potential